ADVANCED IMAGE PROCESSING FOR STEREO

C. Alex Young, Peter T. Gallagher and Jason P. Byrne (with R.T. James McAteer) Heliophysics Guest Investigators Program

STEREO SWG - Pasadena, CA - Feb. 2009

We are developing advanced image processing methods to extract the evolving morphology and kinematics of CMEs and to compare these results with as yet unconfirmed predictions of theory.

OVERVIEW

- Motivation
- CME models
- Multiscale methods

Background Subtraction

Edge Detection

- CME Morphology & Kinematics
- Current Work

LASCO/C2 & SECCHI/COR1-A 24-Jan-07

<u>CME</u> MODELS

• Magnetic Flux-Rope:

-Forbes & Priest, 1990

- Chen & Krall, 2003
- Magnetic Break-out:

-Antiochos et al. 1999 - Lynch et al. 2004

Break-out Simulation:

-Lynch et al. 2006

WHY MULTISCALE?

• Computational analysis seeks representations of signals as linear combinations of basis, frame, dictionary, element (i.e. sines, cosines, wavelets, etc.):

$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$

coefficients basis, frame

- Analysis of the signal is through the statistical properties of the coefficients.
- The analyzing functions (basis, frame elements) should extract features of interest.
- Approximation theory wants to exploit the sparsity of the coefficients.

- Why do we need sparsity?
 - Data compression
 - Feature extraction
 - Feature detection
 - Image restoration (e.g., deconvolution)

BACKGROUND SUBTRACTION

MULTISCALE EDGE DETECTION

Described in "Multiscale Edge Detection in the Corona, Young and Gallagher, Solar Physics, 2008."

Gradient edge detection

(a) LASCO C2
(b) Running Difference
(c) Raw Image
(d) Roberts
(e) Sobel
(f) MS edge detector

Multiscale Decomposition

Horizontal Direction:

Vertical Direction:

Gradient Space Information

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

• The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

• The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

• The edge strength is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradient Space Information

C2 01-Apr-04

Gradient Space Information Vector-Arrow Field

C2 01-Apr-04 Vectors with magnitude: $||\nabla f||$ and inclination angle θ

 $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$

Spatio-Temporal Filter

Vector-arrows corresponding to the magnitude and inclination angle of the Scale 5 decomposition of a LASCO/C2 CME on 01-Apr-04.

Spatio-Temporal Filter

Degrees of Freedom: Scale, Magnitude & Angle ... in Space & Time

LASCO/C2 18-Jan-00

Non-Maxima Suppression

- 1) Nearest-neighbour info.
- 2) Criteria of angle and magnitude from gradients.
- 3) Pixels chained along edges.

Х

Edges

Angle

Mag

LASCO/C2 18-Apr-00

CME FRONT CHARACTERIZATION

Described in "The kinematics of coronal mass ejections using multiscale methods", Byrne, Gallagher, McAteer and Young, A&A, 2009.

LASCO/C2 & SECCHI/COR1-A 24-Jan-07

MORPHOLOGY

- Ellipse fit
- Height, Width, Curvature, Orientation

$$\frac{\rho^2 \cos^2 \theta}{a^2} + \frac{\rho^2 \sin^2 \theta}{b^2} = 1$$

$$D^{2} = \frac{a^{2}b^{2}}{\left(\frac{a^{2}+b^{2}}{2}\right) - \left(\frac{a^{2}-b^{2}}{2}\right)\cos(2\theta'-2\alpha)}$$

SECCHI/COR1 24-Jan-07

MORPHOLOGY

SECCHI/COR1-A 24-Jan-07

MORPHOLOGY

SECCHI/COR1-A 24-Jan-07

CURRENT WORK

- testing a basic toolkit for IDL ID and 2D wavelets
- developing additional multiscale transforms e.g. ridglets and curvelets
- developing improved fitting methods for height-time, velocity and acceleration